Modeling of Automobile Insurance under Solvency II

Roland Voggenauer-Graf von Bothmer
Group Actuarial, Allianz SE
1 Automobile Insurance in Germany

The Market
Pricing
Reserving
Reinsurance

2 Automobile Insurance under Solvency II

Solvency I & US Risk Based Capital
Solvency II: Standard Model
Solvency II: Internal Model
Use Test of the Internal Model
Premium generated by the German insurance industry

Euro 18×10^{10}
… out of that:

1/2: LIFE

1/6: HEALTH

1/3: NON-LIFE*

€ 60 bn

* Property & Casualty
... and the Non-Life Market splits up in:

Premium

- Total
 - Automobile 33%
 - Liability 13%
 - Accident 11%
 - Property 43%

- € 20 bn

Germany

- About 55 million vehicles
- More than 45 million private passenger cars
- … which is 55 cars per 100 inhabitants

Mexico

- Around 30 million vehicles
- Approximately 30 cars per 100 inhabitants
- Only a quarter of the vehicles are insured

Reserves

- Total
 - Automobile 41%
 - Liability 27%
 - Accident 9%
 - Property 24%
Automobile Insurance in Germany

Lines of Business

- Motor Third Party Liability (MTPL): Mandatory since 1939
- Motor Own Damage (MOD):
 - Voluntary cover, split up in:
 - Partial coverage = fire, theft & nat cat
 - Full coverage = partial + accidental damage
- Accident cover for passengers and the driver
- Other additional covers, like
 - Assistance, Mobility
 - Extended Warranty, Gap
 - …
Automobile Insurance in Germany

Share of MTPL and MOD

3 out of 4 cars have an MOD cover

Premium (€ 8 bn + € 12 bn)

Reserves

Motor Own Damage 39%

MTPL 61%

Motor Own Damage 4%

MTPL 96%
Automobile Insurance in Germany

Legal requirements for MTPL

- Minimum coverage
 - Bodily injury (BI): €7.5 mn
 - Property damage: €1.0 mn
 - Other damages: €50,000

- Standard coverage
 - Used to be “unlimited”
 - Now: €50-100 mn, with BI limited to €8-15 mn per person

- Close co-operation between association of insurance companies, Vehicle registration offices, and the police
Automobile Insurance in Germany

Cumulative market shares of the 14 (out of about 100) largest players
Consequences of a strongly fragmented market

- Medium and small size insurers need support in their pricing by
 - German Insurance Association (GDV)
 - Pools
- Very competitive market (small margin – if any)
- Focus on distribution channels
- Innovations in tariff structures and pricing techniques
- Cyclical market
Automobile Insurance in Germany

The cycle: Claims(!)-ratios
Automobile Insurance in Germany

Market shares by distribution channels

- Agents 60%
- Direct 15%
- Broker 25%

Aggregators are gaining market share
- Across all distribution channels, yet ...
- ... mainly in Direct
 - 25% of new business and
 - >80% of this by one comparison website
Pricing of automobile insurance

Evolution of rating criteria

Prior to 1994: Type of vehicle, Type of occupation, Region, Bonus / Malus
Today: On average almost 20 factors, such as:
Pricing of automobile insurance

- Criteria to model: e.g. claims frequency
- Identification of risk criteria: e.g. nationality
- Selection of usable criteria: e.g. origin of driving license

Rating criteria 1
Rating criteria 2
Rating criteria 3
Rating criteria n

Grouping:
- Region
- Occupation
- Age*Gender

Cube-like structure
Pricing of automobile insurance

Cube-like structure of e.g. 3 dimensions

Tariff calculation uses factors:

Actuary: x
Munich: y
male & 35-40: z

... and derives the premium P as:

$$P = \text{Base Rate} \times x \times y \times z$$
Pricing of automobile insurance

Multiplicative rating structure

Let I and K be rating criteria ...

- with classes $i \in (1, \ldots, n)$ and $k \in (1, \ldots, l)$ respectively
- producing a cube Q of tariff clusters $(i,k) \in ((1, \ldots, n) \times (1, \ldots, l)) =: Q$

Let $v_{i,k}$ be the volume and $S_{i,k}$ the amount of losses in (i,k), then:

The pure premium in cluster (i,k) should equal $E(S_{i,k} / v_{i,k}) =: P_{i,k}$

In a multiplicative structure there are parameters μ, α_i, β_k such that

$$P_{i,k} = \mu \alpha_i \beta_k \quad \text{for all } (i,k) \in Q$$

μ being a base rate and α_i, β_k (normalized) rating factors
Reserving in automobile insurance

Reserving under local German GAAP requested to be prudent!

Usually we see patterns like this …

Thus run-off losses do occur on portfolio level,
but are exceptional with regard to single known claims
Reserving in automobile insurance

Development Factor Methods

(e.g. Chain-Ladder, Bornhuetter/Ferguson)

- Historical claims development is used to predict future development
- Apply "Tail Factor" – if need be … which most often is the case
- … subject to: data are homogeneous, no systematic changes, etc.
Reserving in automobile insurance

DF-Methods are applied to both Incurred and Paid

In theory we would expect the two projections to converge at one “Best Estimate”

In reality this seldomly works out

Munich Chain Ladder (by Th. Mack & G. Quarg, 2004)

- Analyzing correlations between paid and incurred, we often observe
 - after a low “paid to incurred ratio” higher than average paid factors
 - after a high “paid to incurred ratio” lower than average paid factors
- Making use of this can reduce the gap between paid and incurred projections
Reserving of automobile insurance

Some of the challenges we face

- The claims frequency in MTPL is declining over time (safety standards)
- ... while the average cost of claims is increasing (increasing values, cost of medical treatment)
- Duration of BI-claims increases in MTPL (less people die after an accident)
- ... but in MOD claims are settled much faster (better claims management)
- Court decisions change, mostly in favor of the insured or the claimant (annuity vs lump sum payment)
- ... many more
Reinsurance in automobile insurance

Typical programs would be

MTPL

<table>
<thead>
<tr>
<th>Quota Share</th>
<th>Risk-based Excess of Loss, e.g.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>€ 4 mn xs € 1 mn</td>
<td></td>
</tr>
<tr>
<td>€ 15 mn xs € 5 mn</td>
<td></td>
</tr>
<tr>
<td>€ 80 mn xs € 20 mn</td>
<td></td>
</tr>
</tbody>
</table>

MOD

<table>
<thead>
<tr>
<th>Quota Share</th>
<th>Event-based Excess of Loss, e.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td>€ 25 mn xs € 25 mn</td>
<td></td>
</tr>
<tr>
<td>€ 50 mn xs € 50 mn</td>
<td></td>
</tr>
</tbody>
</table>

Stop Loss for nat-cat perils
Facultative Reinsurance
1 Automobile Insurance in Germany
 The Market
 Pricing
 Reserving
 Reinsurance
2 Automobile Insurance under Solvency II
 Solvency I & US Risk Based Capital
 Solvency II: Standard Model
 Solvency II: Internal Model
 Use Test of the Internal Model
Solvency I – The old world

Local German Regulation for Solvency I in Non-Life

Solvency Margin = \(\max (\text{Premium index}; \text{Claims index}) \)

Premium index =

\[
18\% \times \text{Premium of up to } €50\text{ mn } \times \text{Self Retention} \\
+ 16\% \times \text{Premium above } €50\text{ mn } \times \text{Self Retention}
\]

Claims index =

\[
26\% \times \text{Incurred Claims of up to } €35\text{ mn } \times \text{Self Retention} \\
+ 23\% \times \text{Incurred Claims above } €35\text{ mn } \times \text{Self Retention}
\]
US Risk Based Capital for P/C (NAIC)

The first “Factor-Model” in insurance

Define:

\[R_0 := \text{Asset Risk} - \text{subsidiary insurance companies} \]
\[R_1 := \text{Asset Risk} - \text{fixed income investment} \]
\[R_2 := \text{Asset Risk} - \text{Equity} \]
\[R_3 := \text{Asset/Credit risk} - \text{Recoverables, Reinsurance} \]
\[R_4 := \text{Reserve Risk} \]
\[R_5 := \text{Premium Risk} \]

and put:

Total Risk Based Capital := \[R_0 + \sqrt{R_1^2 + R_2^2 + R_3^2 + R_4^2 + R_5^2} \]
Europe wants „A new drug ...“

To achieve ...

- consumer protection
- focus on risk-management & risk-steering
- higher transparency on underlying risks

... in 2009 the Directive stipulated

- Principle based approach to supervision
- Market consistent approach for valuing assets and liabilities
- Capital requirements linked to the company’s risk profile

... to come into force in 2013!?
Solvency II Directive

A three-pillar structure

Originally focused on adequate risk management systems
Solvency II Directive

Pillar 1: Quantitative requirements

Limit worst case (financial ruin) within one year to a 0.5% probability

- Availability of free own funds to cover losses of current business (premium risk) and run-off losses (reserve risk)

- Market Value Balance Sheet (“Fair Value”)
 - Minimum Capital Required (MCR) similar to Solvency I
 - Use of approved internal models to evaluate the Solvency Capital Required (SCR)
 - Reduction in required capital is estimated to be 20%, yet …
 - …only a minority of insurers will apply for the usage of an internal model
 - Individual evaluation of risks with standard formula, allowing for diversification
 - Stepwise intervention of the regulator in case MCR < Own Funds < SCR
Solvency II Capital Requirement

Based on Monte-Carlo simulations

One year Value at Risk (VaR) approach

Level of Confidence
AAA AA A

Frequency

Worst case Risk capital

Expected Value

Change in economic value
Solvency II Directive

Pillar 2: Governance & Risk management

Adequate and transparent assessment of all risks

- Risk oriented approach: All material risks need to be included
- Principle based approach to allow for individual implementations at company level
- Principle of “Proportionality”: Medium and small sized insurers should not be overburdened
- Extensive audits and evaluations by the supervisor, e.g. of strategies, processes, governance systems etc.
- Far-reaching authorization of the supervisor, e.g. in case of outsourcing
- Germany: Introduction of “MaRisk” in 2009 already anticipates much of that
Solvency II Directive

Pillar 3: Disclosure & transparency

Disclosure of information regarding the risk situation –
both public and to the supervisor only

- Uniform supervisory reporting within the EEC
- Public disclosure of the solvency situation following the „Solvency and Financial Condition Report“ including e.g.
 - Business policy, corporate structure, market environment, strategies, …
 - Governance structure and compliance statement
 - Principles of evaluation of assets and liabilities
 - Internal governance
 - Required MCR / SCR
 - Disclosure and justification in case the capital requirements are not meet
The Standard Model

Solvency Capital Required (SCR)

- Intangibles
- Non-Life
- Life
- Health
- Credit Risk
- Market
The Standard Model – Non-Life Risk

Non-Life

Premium Risk

Reserve Risk

Nat Cat Risk
The Standard Model

Correlation:
How likely is it to have a major hurricane and to increase reserves for prior years at the same time?

Premium Risk

Reserve Risk

Nat Cat Risk

Measurement of the Risk Exposure:

- Volume * Factor
- Based on volatility & 99.5% percentile
- For reserves and future business
- Allow for diversification by line of business and country
The Standard Model

Concept for Nat Cat

- Scenario based
- Geographical exposure and insured volume
- Add manual Cat if needed
- Allow for diversification
Solvency II – Internal model for P/C business

Ultimate premium risk (non-cat)

<table>
<thead>
<tr>
<th>Gross Model (Sub-LoB Level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Data Input</td>
</tr>
<tr>
<td>Raw Data</td>
</tr>
<tr>
<td>- Planning data</td>
</tr>
<tr>
<td>(Premium/Expenses/Exposure/Losses)</td>
</tr>
<tr>
<td>- Historical data</td>
</tr>
<tr>
<td>(Premium/Exposure/Losses)</td>
</tr>
<tr>
<td>- Individual Large Losses</td>
</tr>
<tr>
<td>- Best Estimate Ultimate by AY</td>
</tr>
<tr>
<td>- Inflation Indices</td>
</tr>
<tr>
<td>2 Data Adjustment</td>
</tr>
<tr>
<td>Adjusted Data</td>
</tr>
<tr>
<td>- Exposure adjustment</td>
</tr>
<tr>
<td>- Inflation Adjustment</td>
</tr>
<tr>
<td>- IBNR/IBNER adjustment</td>
</tr>
<tr>
<td>3 Distribution fitting</td>
</tr>
<tr>
<td>Large Losses</td>
</tr>
<tr>
<td>Attritional Losses</td>
</tr>
<tr>
<td>Premium Cycle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net Model (LoB Level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Dependencies</td>
</tr>
<tr>
<td>- Sub-LoB aggregation</td>
</tr>
<tr>
<td>- Frequency & Severity</td>
</tr>
<tr>
<td>5 Reinsurance</td>
</tr>
<tr>
<td>- 6 Levels of reinsurance</td>
</tr>
<tr>
<td>1 - QS & Surplus</td>
</tr>
<tr>
<td>2 – Risk XoL</td>
</tr>
<tr>
<td>3 – Event XoL</td>
</tr>
<tr>
<td>4 – Multi-Line XoL</td>
</tr>
<tr>
<td>5 – Stop Loss</td>
</tr>
<tr>
<td>6 – Net QS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UW Result (LoB & LE Level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Dependencies</td>
</tr>
<tr>
<td>- LoB aggregation</td>
</tr>
<tr>
<td>- Low/Medium/High</td>
</tr>
<tr>
<td>7 UW result gross/net</td>
</tr>
</tbody>
</table>

© Allianz SE 2011
Assessing the reserve risk by bootstrapping techniques

A Parameterisation

1. Data triangle
2. Fit a CL model to your data
3. Fitted triangle
4. Calculate residuals
5. Generate pseudo triangles
6. Refit the same CL model
7. Distribution of reserves

- Pearson residuals
- for incremental losses (ODP)
- for individual development factors (Mack)
- deviation from fitted to original triangle
- need to be standardised

What would have been the historical data given the latest loss information and under the assumption the CL model is the true model?

- Residuals can be used for sampling with replacement
- Fitted triangle plus different sets of residuals result in pseudo triangles

B Simulation

- Process error is included when forecasting
- Also provides stochastic cash flow
Solvency II – Use Test

In order to prove the quality of the internal model, Solvency II requires it to be used for daily business decisions!
Example

The large loss model & hence the purchase of reinsurance

- Large losses very much depend on the individual insurer
- No standard model is able to reflect this appropriately
- The internal model is simulating empirical large losses
- The reinsurance program should provide appropriate protection against them

Hence:

The large loss model should match the reinsurance program
Linking Risk Models and Business Management

Business Management

- Strategic Planning
- NatCat Limit Controlling
- Reinsurance Optimization
- ALM
- Underwriting
- Reserving
- Plan Year’s Exposure A.
- Loss Ratio A.
- MVM Calculation
- Claims Analysis
- Reporting
- Technical Pricing
- Capital Assessment
- RC Calculation

PRISM

The P&C Insurance Risk Model

Result Assessment

Exposure Assessment
Thank you for your attention!

Roland Voggenauer-Graf von Bothmer
Roland.Voggenauer@allianz.com
+49 (0) 89 3800 13480